Underwater Cinematography – 8K and Beyond

Compared to filming on land, filming underwater always poses challenges. But it is not just about keeping the camera dry. The most challenging aspect of filming underwater is the optics. It is the ultimate factor limiting image quality when filming below the waves. Much of the underwater content that is claimed to be 4K or 8K is limited to approximately high-definition quality or less by its optics, even though it may be recorded on an 8K-capable camera. Fortunately, 8K-capable underwater solutions are now available – solutions used in Avatar: The Way of Water.

For decades the state-of-the-art was to place traditional lenses designed for filming on land behind flat or dome ports. While this appears to be a reasonable solution, it became apparent that aberrations, image plane curvature, angle of view and distortions caused by those ports severely limit the image quality achieved when using housed lenses. The answer is a submersible lens.

11Nikonos RS 13mm fisheye Lens

What is Submersible Lens?

A submersible lens is a lens that has been specifically designed to take sharp pictures underwater. It doesn’t produce sharp images on land. Its optical design incorporates a water medium as part of its optical formulation. 

Submersible lenses were pioneered by Nikon about half a century ago. They were branded Nikonos lenses to offer a high-quality solution for range-finder and DSLR underwater still picture cameras. With the arrival of digital cameras, Nikon abandoned its underwater offering. Nikonos lenses, to this day, offer the highest image quality (by far) when it comes to underwater photography.

In the test images below, we look at 1:1 frame crops from a 5K image captured with a flat port, dome port, and Nikon Nikonos 15mm submersible lens.

Dome ports, used for wide-angle lenses, produce image plane curvature combined with astigmatism when placed underwater, causing extensive blurring of images. Dome ports preserve the angle of view (no image magnification) nor significant geometric distortions. However, they suffer from a loss of sharpness due to image plane curvature (the image is not focused on a flat image plane, but rather on a curved surface) and relatively poor optical performance from the taking lens that needs to be focused on a very close virtual image. Most wide-angle land lenses are not optimized for close-focus performance and usually deliver compromised image quality. In ideal conditions, such systems are limited to approximately 2K equivalent sharpness (about 1000 line pairs per picture width). This limitation falls far short of today’s high-resolution camera standards.

Flat ports perform even worse. While having negligible effect out of the water, a flat port produces severe chromatic aberrations (rainbow-colored edges), pin-cushion distortions, astigmatism, loss of sharpness away from the center of the frame, and (often undesirable) image magnification. An example of a flat port can be a dive mask. For wide-angle imaging, a flat port limits image sharpness to approximately 1K (standard definition) quality.

Submersible lenses, such as Nikonos 15mm, are specifically designed to take sharp images underwater and do not suffer from any of the abovementioned problems. Typically submersible lenses can reproduce one or two orders of magnitude more detail and sharpness than housed land lenses. Their small size also allows side-by-side and beam-splitter configurations for stereoscopic 3D.

Above: 1:1 frame crops from a 5K image captured with flat port, dome port and Nikon Nikonos 15mm submersible lens. 

These crops illustrate dramatic deterioration of image quality (contrast and sharpness) when using flat and dome ports underwater. 

11MTF for Nikonos 15mm at f/2.8
MTF for Nikonos 15mm at f/2.8

The optical performance of Nikon Nikonos 15mm lens was measured using Spatial Frequency Response (SFR) process and MTF function in Imatest software.

The MTF (Modulation Transfer Function) graph shows the sharpness (contrast) of a “cherry-picked” and modified Nikonos 15mm f/2.8 submersible lens on a 9.5K digital sensor (Sony A7 R IV). 

The MTF graph shows contrast (Y axis) versus spatial frequency or detail (X Axis). It shows that this lens produces exceptionally high contrast up to the resolving limit of the sensor (Nyquist limit at 0.5 cycles per pixel) and even beyond, suggesting that the combined MTF is probably limited by the (9.5K) sensor and not by the optics at the maximum aperture. While stopping down, the lens’s optical performance (contrast) is expected to improve even further.

Such outstanding optical performance is impossible to achieve with traditional land lens housed behind dome or flat optical port or by using corrective optics. 

Underwater Stereoscopic 3D

113Deep Underwater Housing
3Deep Underwater Housing

Some content creators, like James Cameron, wish to capture images in a stereoscopic 3D format.

Like on land, there are two main camera configurations for filming stereoscopic 3D underwater. The Side-by-Side camera configuration (like the 3Deep housing on the left) has the benefits of simplicity, small size, and no light loss. The drawback is that this configuration has fixed interaxial distance (stereo base), limiting its use to filming bigger subjects from some distance away to avoid excessive horizontal parallax.

World's First and Only

3D Submersible Beamsplitter

113D beam splitter
DeepX 3D Underwater 3D Beam Splitter

With the Beam-splitter configuration, one camera films through a half-mirror, and the second camera reflects from the half-mirror (DeepX 3D pictured on the left). This configuration benefits from an adjustable interaxial distance allowing closeups and working with subjects of any size. The drawback is the device’s size, complexity, and, until recently, beam-splitter configurations have been only available for housed (flat port) designs, dramatically reducing image quality, limiting the angle of view, and introducing undesirable vertical disparities resulting in 3D that creates discomfort and eye strain when watching on the screen.

DeepX 3D is the world’s first patented camera system designed to capture stereoscopic 3D images using submersible lenses. Unlike other underwater 3D beam-splitter systems that house a beam-splitter behind a flat port, DeepX 3D is wholly submerged in water. Such extreme design allows for a wide angle of view, no geometric distortions, and no chromatic aberrations associated with traditional approaches. It improves sharpness from corner to corner. Jim Cameron’s team in Avatar: The Way of Water used this patented system for the first time. 

DeepX 3D allows underwater immersive, high-resolution stereoscopic 3D images with more detail than possible with traditional housed systems.

11Nikonos 15mm lenses used on Avatar 2: The Way of Water
Nikonos 15mm lenses used on Avatar 2: The Way of Water

The Perfect Pair: Picture on the left shows the modified and optically matched Nikonos 15mm lenses used on Avatar 2: The Way of Water (serial numbers #216940 and #202669). These lenses are the actual ones used on the DeepX 3D Beam Splitter system when filming underwater sequences by James Cameron’s underwater team. The lenses were carefully selected from a pool of over 100 lenses to ensure consistency and optical performance across the frame. 

World's First and Only

Beyond 8K

11Vanquish Underwater Housing
Vanquish Underwater Housing

Vanquish RS Underwater housing represents the ultimate innovation:

  1. Optical quality exceeds 8K from corner to corner,
  2. All titanium ceramic-coated body is strong, small and lightweight.
  3. Integrated or/and external monitoring can be configured.
8 Responses
  1. […] ▲ Los directores de fotografía submarinos enfrentan una gran cantidad de desafíos, incluidas las corrientes oceánicas y la refracción de la luz, que hacen que los entornos ópticos sean drásticamente diferentes de la filmación en tierra. Pero Achtel se centra en los “resultados impresionantes” que se obtienen una vez superados los obstáculos (fuente del vídeo: enlace) […]

  2. […] ▲ Underwater cinematographers face a plethora of challenges together with ocean currents and light-weight refraction that make optical environments drastically totally different from on-the-ground filming. However Achtel focuses on the “breathtaking outcomes” that come as soon as the obstacles are overcome (video supply: link) […]

  3. […] ▲ 水中撮影監督は、海流や光の屈折など、光学環境を地上での撮影とは大きく異なるものにする多くの課題に直面しています。 しかし、Achtel は、障害を克服した後に得られる「驚くべき結果」に焦点を当てています (ビデオ出典: リンク) […]

  4. […] ▲ Sualtı fotoğrafçıları, okyanus akıntıları ve ışık kırılma faktörleri dahil olmak üzere pek çok zorlukla karşı karşıyadır. Ancak Octel engelleri aştı ve “güzel resimler” yaratmaya odaklandı. (Video kaynağı:Bağlanıyor) […]

  5. […] ▲  Les directeurs de la photographie sous-marine sont confrontés à une multitude de contraintes comme les courants marins et la réfraction de la lumière, qui font que les environnements optiques sont radicalement différents des tournages sur le terrain. Mais Pawel Achtel se concentre sur les “résultats époustouflants” obtenus une fois ces obstacles surmontés (source vidéo : privilège). […]

ACHTEL Pty Limited specialises in immersive cinematography for Giant Screen, IMAX®, Flying Theatre, Sphere and VFX above and underwater. Our innovative products and cinematography won international awards and attention for uncompromised approach to image quality. ACHTEL’s products have been used on many documentaries and feature films, including James Cameron’s Avatar: The Way of Water.

11Humpback Whales
11Green Turtle
119x7 Digital Cinema Camera


10 Montrivale Rise
Dynnyrne, TAS 7005
Australia


T. +61-40 747 2747